BasicTAD: An astounding RGB-Only baseline for temporal action detection
نویسندگان
چکیده
Temporal action detection (TAD) is extensively studied in the video understanding community by generally following object pipeline images. However, complex designs are not uncommon TAD, such as two-stream feature extraction, multi-stage training, temporal modeling, and global context fusion. In this paper, we do aim to introduce any novel technique for TAD. Instead, study a simple, straightforward, yet must-known baseline given current status of design low efficiency our simple (BasicTAD), decompose TAD into several essential components: data sampling, backbone design, neck construction, head. We investigate existing techniques each component and, more importantly, perform end-to-end training over entire thanks simplicity design. As result, BasicTAD yields an astounding real-time RGB-Only very close state-of-the-art methods with inputs. addition, further improve preserving spatial information network representation (termed PlusTAD). Empirical results demonstrate that PlusTAD efficient significantly outperforms previous on datasets THUMOS14 FineAction. Meanwhile, also in-depth visualization error analysis proposed method try provide insights problem. Our approach can serve strong future research. The code model released at https://github.com/MCG-NJU/BasicTAD.
منابع مشابه
Cascaded Boundary Regression for Temporal Action Detection
Temporal action detection in long videos is an important problem. State-of-the-art methods address this problem by applying action classifiers on sliding windows. Although sliding windows may contain an identifiable portion of the actions, they may not necessarily cover the entire action instance, which would lead to inferior performance. We adapt a two-stage temporal action detection pipeline ...
متن کاملislanding detection methods for microgrids
امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...
15 صفحه اولMachine for RGB - D Action Recognition
Bilinear Heterogeneous Information Machine for RGB-D Action Recognition Report Title This paper proposes a novel approach to action recognition from RGB-D cameras, in which depth features and RGB visual features are jointly used. Rich heterogeneous RGB and depth data are effectively compressed and projected to a learned shared space, in order to reduce noise and capture useful information for r...
متن کاملAn Innovative Curvelet-only-Based Approach for Automated Change Detection in Multi-Temporal SAR Imagery
This paper presents a novel approach for automated image comparison and robust change detection from noisy imagery, such as synthetic aperture radar (SAR) amplitude images. Instead of comparing pixel values and/or pre-classified features this approach clearly highlights structural changes without any preceding segmentation or classification step. The crucial point is the use of the Curvelet tra...
متن کاملImproved Spatio-temporal Salient Feature Detection for Action Recognition
Spatio-temporal salient features localize the local motion events and are used to represent video sequences for many computer vision tasks such as action recognition. The robust detection of these features under geometric variations such as affine transformation and view/scale changes is however an open problem. Existing methods use the same filter for both time and space and hence, perform an ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Vision and Image Understanding
سال: 2023
ISSN: ['1090-235X', '1077-3142']
DOI: https://doi.org/10.1016/j.cviu.2023.103692